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Percolation processes in d-dimensions 

D S Gaunt, M F Sykes and Heather Ruskin 

Wheatstone Physics Laboratory, King's College, London WC2R 2LS, UK 

Received 11 June 1976 

Abstract. Series data for the mean cluster size for site mixtures on a d-dimensional simple 
hypercubical lattice are presented. Numerical evidence for the existence of a critical 
dimension for the cluster growth function and for the mean cluster size is examined and it is 
concluded that d ,  = 6. 

Exact expansions for the mean number of clusters K ( p )  and the mean cluster size S ( p )  in 
powers of 1/u where U = 2d - 1 and p < p c  are derived through fifth and third order, 
respectively. The zeroth-order terms are the Bethe approximations. 

The growth parameter A is found to have the expansion 

A = A B ( 1 -  I fo - ' -2~- ' -  . . . )  

where A B  is the value of A in the Bethe approximation. Similarly the critical probability p c  
can be expanded in inverse powers of U as 

pc = U-' + I&-* + 3 q ~ - ~  + ~ G u - ~  + . . . . 
Although these expansions are probably only asymptotic, they yield good approximations 
even when d = 3. 

1. Introduction 

Hyperdimensional lattices have recently been studied by many authors (Thompson 
1974, Thompson and Gates 1974, Baker 1974,1975, Gerber and Fisher 1974,1975). 
It has been conjectured (Toulouse 1974) that the critical dimension for percolation is 
d ,  = 6, instead of the d ,  = 4 found for second-order phase transitions (with short range 
interactions); above this the critical exponents should be classical and dimension 
independent. (For a general introduction see Toulouse and Pfeuty 1975.) It has been 
suggested that this conjecture might be tested by numerical studies (Toulouse 1974, 
Domb, private communication). In this paper we present series expansion data for the 
d-dimensional cubic lattice and draw some tentative conclusions from their analysis. 
Kirkpatrick (1976) has also studied the problem but using Monte Carlo methods. 

The general techniques available for series development in higher dimensions have 
been described in detail by Fisher and Gaunt (1964) in their study of the Ising and 
excluded volume problems on a d-dimensional cubic lattice; the derivation of low 
density series expansions for a study of percolation processes has been described by 
Sykes and Glen (1976). By combining the methods described by these authors we have 
derived data for the site percolation problem on a d-dimensional cubic lattice. Since no 
new elements are introduced into the calculation we simply summarize the results in 0 2. 
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For the percolation problem we have confined our study to the critical exponent y 
for the mean size defined as usual by 

S b ) -  c ( P c - P ) - y ,  P + P c  ( 1 . 1 )  
since this has been found to be the exponent most accessible by series methods in two 
and three dimensions (Sykes et a1 1976a, b, c, d). (For a definition of S ( p )  see Sykes and 
Glen 1976.) The dimension independent limit for d > d ,  in ( 1 . 1 )  is y = 1 ;  this is the 
value found for the Bethe approximation. (We give S,(p)  explicity in (3.17).) 

We also study the asymptotic behaviour of the total number, N,, of connected 
clusters of s sites. This defines a critical exponent 8 through 

N, = As-'A ', s+m. (1.2) 
The form (1.2) has been studied in two and three dimensions by Sykes and Glen (1976) 
and Sykes et a1 (1976d). The amplitude A and the growth parameter A are known 
exactly for the Bethe approximation (we give them explicitly in (3.8) and (3.9)) and the 
corresponding dimension independent limit is 6 = 21. 

On general grounds it is usually supposed that the Bethe approximation will become 
more accurate with increasing coordination number Y and we have used the general 
techniques introduced by Fisher and Gaunt (1964) to derive expansions in l / o ,  where 
(T = 2d - 1 = Y - 1 ,  which correspond effectively to developments in inverse powers of 
the dimension. These developments serve as a useful alternative to supplement the 
direct expansions in high dimensions. 

2. Series expansions 

We have derived the first seven perimeter polynomials for the simple hypercubical 
lattice system studied by Fisher and Gaunt (1964 § 2). These are a straightforward 
generalization of those defined by Sykes and Glen (1976) 0 2. Denoting as usual the 
respective expectations of the two species of site by p and q and the dimension of the 
lattice by d we find: 

D , ( d )  = q2d 

D2(d )  = q4d-2(;1) 

D3(4 = q6d-4r(;1)+4q-1(31 
D4(d)  = q8d-6[ ( f )  + (8q-' + 9 ~ - ~ ) ( : )  + (24q-2 + 8q -3 d )3 
D5(d) = q '""-'[[(;') + (12q-' + 28q-2 + 20q-3 + q  -4 )(2) d 

+ (72q-2 + 168q-3 + 96q-4 + 12q-5)($) +(192q-3 + 192qW4+ 16q -6 )(4)] d 

D,(d)  = q 1 2 d - 1 0 [ ( f )  + (16q-' + 60q-2 + 80q-3 + 54q-4 + 4q-5) (3  
+ ( 144q-2 + 720q-3 + 966q-4 + 720q+ + 280q+ + 6q -8 )(3) d 

+(768q-3+3264q-4+2784q-5+ 1504q-6+288q-7+32q-9)(i) 

+(1920q-4+3840q-5+480q-6+640q-7+32q -10 ) ( 5 ) ]  d 



Percolation processes in d -dimensions 1901 

&(d) = q14d-12[(f) + (2Oq-' + lOOq-'+ 228f3 + 252q-4 + 136q-'+ 22q -6 )(2) d 

+ (240q-* + 1880q-3 + 4926q-4 + 6024q-5 + 4924q-6 + 2496q-' 

+ 662q-s+72q-9+q-'2)(~)+(1920q-3 + 15744q-4+ 36624q-' 

+ 36256q-6+ 25440q-7 + 10320q+ + 2288q-9+ 672q-1°+ 24q-13)(:) 

+ (9600q-4 + 63360q-5 + 89760q-6 + 5792Oqp7 + 23680q-' 

+ 7680q-9 + 176Oq-lo + 96Oq-" + 8Oq-l4)(g) + (23040q-' + 76800q-6 

(2.1) +28800q-7+ 19200q-8+3840q-9+ 192Oq-l1 +64q -15 )(6)]. d 

We have also derived the expansion for the mean number of clusters in general form 
through p l 1  : 

& ( p )  = p - ( f  )p' + (: )p4 + 4 (: ) p  - 8d ) p  + [<% ) + 27(: ) + 1W4d )IP 
-[(:)+72(:) +720(:)1p9+[2(:)+ 318(:)+4544(:)+ 12096(f)]p10 

-[4(:)+1032(:)+19648(4d)+. . . (g)]p"+. . . . (2 * 2) 

Using the general expansion and manipulative procedures described by Sykes and 
Glen (1976) 0 2 we obtain from (2.1) and the first nine coefficients of (2.2) the total 
number of clusters with s-sites, N,, through N9 for all d.  We give the explicit values for 

Table 1. Total number of clusters (N,) of s sites on a d-dimensional cubic lattice. 

d = 2  d = 3  d = 4  d = 5  d = 6  d = 7  

Ni 1 1 1 1 1 1 
N2 2 3 4 5 6 7 
N.3 6 15 28 45 66 91 
N4 19 86 234 495 90 1 1484 
NS 63 534 2 162 6 095 13 881 27 468 
N6 216 3 481 21 272 80617 231 008 551 313 
N7 760 23 502 218 740 1 121 075 4 057 660 11 710 328 
Ns 2725 162 913 2 323 730 16177405 14114927 259379101 
Ng 9910 1 152 870 25314097 240196280 1398295989 5933702467 
Nio 36446 8 294 738 281 345 096 3 648 115 531 
Nil 135268 60 494 549 3 178 474 308 
Ni2 505861 446 205 905 
NI3 1903 890 
NI4 7204874 
NiS 27 394 666 
N16 104 592 937 
N17 400 795 844 
N18 1 540 820 542 
Nig 5 940 738 676 

3 322 169 129 

d = 2 , 3 , 4 , 5 , 6  and 7 in table 1 since these are the numbers we study numerically. In 
3 , 4  and 5 dimensions we have extended the data by deriving extra perimeter poly- 
nomials and extra coefficients in the mean number expansion; the data for d = 2 is taken 
from Sykes and Glen (1976). 
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Alternatively the data can be summarized for all dimensions in the form 

= 2 “ ’ ~ ’ - ~ (  d ) +2”3s”-5(s-2)(2s2-6s +9)( d ) +2s-5ss-7(s-3) 
s - 1  s - 2  

( 1 2 ~ ~ - 1 0 4 ~ ~ + 3 6 0 ~ ~ - 6 7 9 ~ ~ + 1 1 2 2 ~ - 1 5 6 0 )  
X 

6 
(s 3 3). (2.4) 

The calculation of successive A; numerically for values of s through s = 9 is a matter of 
arithmetic; the calculation of the Ai  as functions of s is difficult. Contributions to AT 
come from Cayley trees since these are the only clusters which can enter all dimensions; 
hence the first term of (2.4) follows from the rigorous result of Fisher and Essam (1961), 
equation (14). The second and third terms are confirmed by the data of table 1. The 
form of (2.4) is not in agreement with the results of Lunnon (1974) whose values for A: 
and A: would seem to be in error. 

We have obtained the expansion for the mean cluster size 

for all d through b8 and we have supplemented the data for d = 2,3,4 and 5 as 
aforementioned. We tabulate the coefficients in table 2. Here again the data can be 

Table 2. Coefficients for expansion of S ( p )  = b,p‘ on a d-dimensional cubic lattice. 
I 

d = 2  d = 3  d = 4  d = 5  d = 6  d = 7  

bl 4 
b2 12 
b3 24 
b4 52 
b5 108 
b6 224 
b7 412 
bg 844 
bg 1528 
blo 3 152 
b11 5036 
biz 11 984 
bls 15040 
b14 46512 
bl5 34788 
b16 197612 
bi7 4036 
big 929368 

6 
30 
114 
438 
1542 
5 754 
19 574 
71 958 
233 574 
870 666 
2 696 274 
10 373 274 

8 
56 
3 20 
1832 
9 944 
55 184 
290 104 
1 596 952 
8 237 616 
45 100 208 

10 
90 
690 
5 290 
39 210 
293 570 
2 135 370 
15 839 690 
113 998 170 

12 
132 
1272 
12 252 
115 332 
1 091 472 
10 159 252 
95 435 172 

14 
182 
2 114 
24 542 
280 238 
3 210 074 
36 394 302 
414 610 014 
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summarized in the alternative form 

= Z;!(d) +2r-2(r- 1)!(2r2-7r+8) 
r 

m4- 116r3+435r2-799r+732 
6 + 2r-4(r - 2)! 

8r6-148r5+ 1142r4-4805r3+ 12125r2- 18960r+ 17796 
6 

X 

where the numerical calculation of successive B; through r = 8 is a matter of arithmetic 
and the derivation of the more general form is difficult. 

By further effort it should be possible to add one or two more terms to the series 
derived, in most cases, but in the light of our conclusions in 8 4 we have not thought this 
worthwhile at present. 

3. Expansions in l l a  

By following the general methods developed by Fisher and Gaunt (1964) we now derive 
expansions in the variable l/a where U = v - 1 = 2d - 1, v being the coordination 
number of the lattice. This is facilitated by first expressing the binomial coefficient (f) in 
inverse powers of U ;  we find 

1 s-1 

(3.1) 

= ( u ~ / ~ ~ s ! ) [ ~ - s ( s - ~ ) u - ~ + ~ s ( s - ~ ) ( ~ s ~ -  1 3 s + l l ) ~ - '  

-&s - l)(s - 2)2(s2 - 5s + 3)U-3 + . . . I .  (3.2) 
Substituting (3.2) into (2.4) gives 

(S - 1)(4s2 - 2 IS + 18) 
2s 

- 1  
ss-3 

N, (d) - 1 - 
(s - l)! U 

(s- l ) ( ~  -2)(48s4-535s3+2295s2-4926s +4680) -2  + U -...) 
24s4 

(s 3 3). (3.3) 

If formally we take the logarithm of this expression we find 

(S - 1)(4s2-21s + 18) 
2s 

-1  
U - 

(S - 1)(79s4 - 1 1 0 6 ~ ~  + 5 4 9 3 ~ ~ -  11292s + 8388) 
24s4 

-2  
U - . . .  (3.4) - 
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where the B,, are Bernoulli numbers and we have used Stirling's formula for ln(s - l)!. 
We may now use the definition (1.2) 

1 
In A (d) = lim - In N, (d)  

S-P.00 s 
(3.5) 

to derive an expansion in powers of l/a for the limit A ; thus, 

(3.6) I n A ( d ) = I n a + 1 - 2 a - ' - 3 ~ ~ ~ - ~ -  7 . . . 

which will continue in this way provided, as seems probable, that the higher coefficients 
of (3.4) are also of O(s) for s large. Using the rigorous results of Fisher and Essam 
(1961) it can be shown that in the Bethe approximation the total number of clusters with 
s-sites is given asymptotically by 

N, Î A S - ~ / * [ ( T " / ( ~  - l)"-'IS 

A = (a/2.r)'/2(a + i)(a - 1r5/'. 

(s + 00) 

where the amplitude 

Thus, in the Bethe approximation the growth parameter A is given by 

A B  = a"/(a - I)"-'. 
From (3.6) and (3.9) we find 

ln(A/AB) = - 1&-'-3&7-'- . . . 
or, taking exponentials, 

A=A~(1-1&-'-2a-'- . .  .). 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

This expansion is the analogue of the l/a-expansions derived by Fisher and Gaunt for 
the excluded volume limit and the Ising critical point (see Fisher and Gaunt (1964) 
equations (5.183) and (5.283)). Like those expansions, (3.1 1) is probably asymptotic. 
Certainly for the spherical model the corresponding expansion for the critical tempera- 
ture T, can be shown rigorously to be only asymptotic (Gerber and Fisher 1974). 
Unlike the expansions of Fisher and Gaunt where the first-order correction term to the 
Bethe approximation is of second-order in ( l /a) ,  the leading correction term in (3.1 1) 
is of first-order. 

If (3.1 1) is asymptotic, then truncation at the smallest term for given a should yield 
the optimum approximation. Unfortunately the expansion is so short that it is impos- 
sible to tell if the smallest term has been attained in any dimension. Consequently we 
have estimated A by truncation after the last term in all cases. These values, A'"), are 
compared in table 3 with the best series estimates obtained in the next section. Not 
surprisingly the l/a expansion is not very accurate for d = 2, but by d = 3 A is already 
only 9.4% too small. For d =4,  5 and 6 values of A'"' fall within the numerical 
uncertainties of the series estimates and are only 1.5%0, 0.68% and 0.95% smaller than 
the central estimates, respectively. 

A similar procedure can be followed for the coefficients b,(d) of the mean cluster 
size (2.5). Thus substituting (3.1) into (2.7) we find 

b,(d) = a'[l- (131. -4)a-' +(lirz-8gr + 18;)a-' 

-(x 16r 3-8' 16r + 543r - 162:)~-~ + . . . 1, ( r 3 6 )  (3.12) 
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Table 3. Estimates for critical parameters. 

d 2 3 4 5 6 

A d )  0.593 f 0.002 0.310 f 0.004 0.197 f 0.006 0.141 * 0.003 0.108 * 0.003 
p%) 0.7315 0.31 0.1988 0.1400 0,1085 
dMC'(d )  0.312 f 0.001 0.198 f 0.001 0.141 f 0.001 0.106 f 0.001 
A d )  2.43 * 0.03 1.66f 0.07 1.41 f0.25 1.25 f0.15 1.06*0.20 
yCMC)(d) 2.3f 0.1 1*80*0*05 1.61t0.1 1.3*0.1 1.0* 0.05 

A (4 4*06*0.02 8*35*0.04 13.35f0.2 18.8*0.4 24.4 f 0.9 
A'"'(d) 1.875 7.568 13.148 18.673 24.169 

1*00f0*05 1 5 0 *  0.09 1.90f0.15 2.25 *0.30 2.5 *0*4 

where the coefficient of a-"' is a polynomial in r of degree m. The structure of (3.12) is 
considerably simpler than that of (3.3) and taking the logarithm yields 

In b,(d)  = r In a - ( l i r  - 4)a-' - (22r - (3.13) 

Remarkably the terms in r2, r3, . . . have cancelled identically and assuming, as seems 
probable, that this cancellation will continue in the general m th term, the logarithm will 
be formally linear in r to all orders. This simple situation also obtains for the excluded 
volume and Ising limits (Fisher and Gaunt 1964, equations (5.16) and (5.27)), in 
contrast to the more complicated behaviour of (3.4) where, as previously mentioned, 
the general term is only asymptotically linear in s. If, following (3 .3 ,  we formally define 
a limit p by 

- (16tr - 1 l O i $ ) ~ - ~  - . . . . 

1 
In p ( d )  = lim -In b,(d) 

,-too r 
(3.14) 

then we find 

Although 1/p may be identified with the radius of convergence of the mean size series 
unfortunately this does not always equal p, .  In particular, a Dlog Pad6 analysis of the 
S ( p )  series ford = 2 and 3 (Sykes eta1 1976a, d) shows that the radius of convergence is 
determined by a singularity on the negative real p-axis at p = -po. We have performed 
similar calculations for higher dimensions (see § 4) and conclude that as d increases p o  
moves further from the origin relative to p,. It has not been possible to estimzte p o  with 
any precision, but very roughly 

pc/po' 1.83, 1.65, 1*45,1.25, 1.0 (3.16) 

for d = 2 ,3 ,4 ,  5 and 6 respectively. Such behaviour would tie in nicely with a critical 
dimension d ,  = 6. But even if the estimates (3.16) are quite wrong, it seems likely that 
the singularity at p ,  will eventually dominate the low density expansion of Si$) for large 
enough d .  This is what happens for the Bethe approximation (Fisher and Essam 1961) 
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which has 

p c =  l/(T. (3.18) 

Hence for large enough d (or (T) we appear to have p = l/pc and since the ( l / ( ~ ) -  
expansions are probably only asymptotic in any case, we take the exponential of (3.15) 
and write 

(3.19) 

Alternatively, we may invert this expression and obtain a (l/a)-expansion for pc  itself; 
namely 

(3.20) 

As expected the zeroth-order term is the result (3.18) of the Bethe approximation. The 
leading correction term is again of first order in l/u; a similar result is suggested by the 
work of Domb (1972). 

In contrast to (3.1 l), there are a sufficient number of terms in (3.20) to demonstrate 
explicitly that the smallest of them is attained, at least for d = 2 and 3. For d = 3 
truncation after the smallest term yields an estimate which is too small by an amount 
equal to f of the smallest term. We have therefore calculated approximations to pc  by 
truncating after the smallest term and adding f of the smallest term for all d ;  for d = 4 
and 5 the smallest term is probably the last one, while for d = 6 it probably is not, 
although we have assumed it is for the purpose of these calculations. These estimates 
are denoted p?' in table 3. The accuracy for d = 2 is quite reasonable considering the 
expansion we are using is probably asymptotic. For d = 3 ,  p?' coincides with the series 
estimate by construction and for d = 4,5 and 6, p?) lies well within the numerical 
uncertainties of the series estimates. 

We have also derived l/o-expansions for the mean number of clusters K ( p )  and for 
the mean cluster size S ( p ) .  These are the analogues of the l/o-expansions derived by 
Fisher and Gaunt for the free energy and zero field susceptibility of the Ising model 
(Fisher and Gaunt 1964, equations (5.3) and (5.19) respectively). 

Starting with the mean number, first notice that the leading two terms of (2.2) 
constitute the mean number of clusters in the Bethe approximation for p < p c  

7 -3- l/pc = (T(1- 1iu-l- l;/- 12ga . . . ). 

p c  = (l/a)(l + l&'+ 3;a-'+ 2 0 ; ~ ~  + . . .). 

K d p )  = p - (W. (3.21) 

Now from (3.1) each of the binomial coefficients (3 in (2.2) can be replaced by a 
polynomial in (T of degree s, so that (2.2) can be written as 

where [ x ]  is the integer part of x ,  and the coefficients GE, can be calculated for all c for 
r c 1 1. In terms of the rescaled variable 

x = up, (3.23) 
(3.22) becomes an expansion in powers of x in which the coefficient of x' is a polynomial 
in inverse powers of (T of degree r, the lowest order term, however, being of degree 
[$(r + l)]. Regarding the series as a double series in x and ( l / a )  we may formally 
rearrange to obtain an expansion for the mean number of clusters in powers of l/a. 
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Performing these manipulations we derive the result 

1 4 1 6 - 1  7 7 8 -4 
K = K B + ( ~ X 4 ) a - 2 + ( ~ X 6 ) a - 3 + ( - g X  -zx 6x + E x  )a 

3 10 + ( - &x + ;x ' - 2Ex - 1;x + 3 5 x  )a-5 

+(;x6+;X7+4&x8+13;x9-35~x 5 10 +. . . ) i f 6  

+( - ;x7+2~X8-21~x9+132px 11 10 +. . .)a-' 

+ (- 5x8- 13+x9- 137Mx lo+. . . )a-8 

73 10 + ( 2 3 : ~ ~ -  1 3 5 m ~  

+(1722x1O+. . .)(T-"+. . . 
+. . . )aV9 

(3.24) 

which is correct to order x lo and to order ( l / ( ~ ) ~ .  
The first term on the right-hand side of (3.24), corresponding to ( l / a )  + 0, is just the 

Bethe approximation for p < p c  (x < 1). In as far as the truncated series in l/a is a good 
representation of K ( p )  one is justified in concluding that the Bethe approximation 
becomes more accurate as u+00. Notice that the leading correction term is now of 
order ( 1 / ( ~ ) ~  rather than of order ( l / a ) .  The corresponding expansion for the free 
energyf = -F/kT = 1nZof the Isingmodel is (Fisher and Gaunt 1964, equation (5.3)) 

(3.25) 1 4  3 6  1 1 8  -4 
f = f B + ( $ X 4 ) a - 2 + ( : x 6 ) a - 3 + ( L g X  --ax + l E X  )a + . . * 

wherefB is just the Bethe approximation for T >  T,. The expansions (3.24) and (3.25) 
are rather similar in form; indeed the leading correction terms which are both of order 
( l /&)2 are identical while the second-order corrections are only slightly different. Of 
course, the higher-order corrections differ more and more. This similarity in form 
reflects the close formal analogy which exists between the Ising ferromagnet and the 
percolation problem (Kasteleyn and Fortuin 1969). 

If one sets l/a = 1 in (3.24) one discovers that the coefficient of each power of x 
vanishes identically. This simply corresponds to the fact that the Bethe approximation 
is exact for the one-dimensional linear chain (a = 1, Y = 2, d = 1). 

Evidently the coefficient of ( l / a ) "  is a polynomial in x, the term of lowest degree 
being X" and that of highest degree being x2". Although each coefficient is merely a 
finite polynomial in x and hence is a non-singular function of p ,  it is clear that the series 
in (1/a) can only represent the mean number K ( p )  for p < p c  i.e. only for x < x, = x,(a). 
This strongly suggests that the series in ( l / a )  for fixed x is divergent if x is large enough. 

One may also expand the mean cluster size S ( p )  in powers of l/a. This is most 
easily done, at least in principle, by starting with the expression (3.12) for the expansion 
coefficients b,, multiplying by p r  and summing from r = 6 to 00. After some rather heavy 
algebraic manipulation we find 

x3 
(1 - X I  

+- 4(1;-3x+4;X2-35~x4+52~x5-23~x6)a-3+ . . . (3.26) 

where the leading term, SB, is the Bethe approximation for p < p c  given by (3.17). 
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Alternatively, and perhaps more interestingly, one may define the recurrence 

(3.27) 

where bl = (T + 1 and b2 = a(a + 1). If all the correction coefficients d, = 0, then (3.27) 
generates the low density coefficients of the Bethe approximation. Similar recurrence 
relations exist for the coefficients of the high temperature susceptibility and generating 
function for self-avoiding walks; in these cases the correction coefficients have direct 
graph-theoretical interpretations (Sykes 1961). By solving the recurrence relation 
generally the series coefficients 6, are given explicitly in terms of the d, by 

relation 

( r  = 3,4,5,  . . .) 2 br = 2 ~ b r  - 1 - U br -2 + d r  

r 

b,(d) = qa‘-l+ 1 dk ( r  + 1 - k ) c ~ ‘ - ~ .  
k = 3  

Multiplication by p r  followed by summation from r = 1 to 00 yields 

(3.28) 

(3.29) 

where the first term is the Bethe approximation (3.17). On writingp = x/a, interchang- 
ing the order of summation and summing on j = r - k, we get 

(3.30) 

Expressing d3, d4, . . . ds as polynomials in a by using (3.27), (2.6) and (3.1), we find 
1 2  1 

2 

d,=-lTu + 15 

d 4 = 2 a  -2 
1 3  2 1  d s = - T ~  + 3 ~  + 7 ~ - 3  

d,j = 2$a4 + 6a3 - 35a2 - 6~ + 32; 

d7 = 2$a5 - 26:a4 + 1 1 l:a3 - 1281a2 - 153Aa + 115; 

d ~ = 2 ~ a 6 - 6 i 0 5 +  1 7 3 : ~ ~ -  1284$~~+2167$c+~+ 1291&(+-2343$ (3.31) 

where for k 2 4 ,  dk is a polynomial of degree (k -2). Substituting (3.31) into (3.30), 
collecting up terms in l/a and performin the infinite sums for the terms in ( 1 , ’ ~ ) ~  and 
( l/a)3, which yield extra factors (1 - x) and (1 - x ) - ~  respectively, we finally obtain 
(3.26). 

The Bethe approximation (3.17) has a simple pole at x = 1. The coefficient of 
(l/a)” in (3.26) appears to have the form 

-? 

~ ~ ( k , , + k ~ ~ + k ~ ~ ~ +  . . . +k3(m-1~x3(m-1))(1-X)-(m+1), (3.32) 

and hence diverges increasingly strongly at x = 1 as m increases. Of course the 
divergence of the (l/a)-expansion to all orders at x = 1 is an artifact and does not imply 
that S(x/cr) has any singularity at x = 1. Notice that in contrast to the mean number 
expansion (3.24) the leading correction term in (3.26) is now of first order in (l/a). This 
means that the Ising/percolation analogy mentioned earlier is not now as close, since 
the analogous expansion for the reduced susceptibility of the Ising model (Fisher and 
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Gaunt 1964, equation (5.19)) 
A 

(3.33) 

where xB is the Bethe approximation for T >  T,, has its first correction term of second 
order. 

4. Series analysis 

In this section we analyse the low density expansion of the mean size of clusters S ( p ) ,  
and the expansion of the generating function A (2) for the total number of clusters with 
s-sites, N,, namely 

00 

A ( z )  = 1 + 1 NJ'. 
s = l  

(4.1) 

Our aim is to examine the question of a critical dimension; for percolation processes, 
Toulouse (1974) has suggested this must be d ,  = 6. 

The analysis of the mean size series S ( p )  is complicated by the presence of the 
non-physical singularity on the real negative p-axis at p = -pa. As mentioned in the last 
section, it is this singularity which ultimately dominates the behaviour of the series 
coefficients for small d .  However, the early coefficients are dominated by the strong 
physical singularity at p,;  the only effect on the initial coefficients of the much weaker 
singularity at -pa is to cause a characteristic odd/even oscillation in the ratios pn of 
successive coefficients. Hence an analysis of the physical singularity may be attempted 
using the basic ratio method (Gaunt and Guttmann 1974). In practice, the non-physical 
singularity proves to be rather troublesome and consequently our results are not very 
precise. For this reason we merely outline the procedure that we have followed 
suppressing most of the details. 

Because of the odd/even oscillations, we first calculate the quantities p:= 
i [npf l  - ( n  - 2)pfl-*], which are the intercepts obtained by extrapolating linearly against 
l / n  alternate pairs of ratios. Taking successive averages f (p,*+p:- l )  smooths out the 
oscillations and extrapolating to n = 00 yields reasonably good estimates of the limit 
p = l/p,. Corresponding estimates of y may be obtained by first calculating yn = 
1 + n ( p f l  - p ) / p  followed by extrapolation of the smoother averages i ( y f l  + Y ~ - ~ ) .  

We have also studied the Dlog Pad6 approximants to S ( p ) .  The last few entries in 
each of the main diagonal and off-diagonal sequences were used to estimate p c .  The 
corresponding value of y was then read from a pole-residue plot. The location of the 
closest singularity on the negative p-axis was also studied and rough estimates were 
given in (3.16). 

Our best overall estimates of pc  and y for d = 4 , 5  and 6 are presented in table 3. 
For completeness the corresponding values for d = 2 and 3 are also tabulated (Sykes et 
a1 1976a, d). Roughly speaking, as d increases, the configurational data 'samples' the 
lattice less and less representatively, and the uncertainties in both pc  and y increase 
accordingly. Table 3 confirms that to within numerical accuracy the exponent y attains 
the mean field value y = 1 in six dimensions, that is d, = 6. In figure 1 values of y for 
d = 2 to 6 are plotted against d and are seen to vary reasonably smoothly. The broken 
line is the prediction of Harris et a1 (1975) who used a renormalization-group approach. 
To first order in E = 6 - d,  they found 

(4.2) y = 1 +?€. 
1 
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2 3 L 5 6 
d 

Figpre 1. Exponents y and 6 plotted as functions of dimension d. The broken curve shows 
the result of the renormalization group expansion to first order in E .  

Although the €-expansion result gives the correct qualitative trend for small E,  it is not 
in quantitative agreement, lying below the true curve. 

We turn now to the expansion (4.1) of the generating function A (2). According to 
(1.2), A ( z )  should exhibit a singularity on the real positive z-axis of the form (Gaunt 
and Guttmann 1974) 

A (2) A0 -A 1( 1 - Az) ' - ' ,  (e>  1, z-, l / A  - )  (4.3) 
where 8 = 1 is interpreted as a logarithmic divergence. Since the N, are necessarily 
positive, the singularity at z = z ,  = l / h  must lie on the circle of convergence; there can 
be no closer singularity on the negative z-axis, for example. This is confirmed by the 
Dlog Pad6 approximants, according to which the first singularity on the negative axis is 
more than 22, from z = 0 for any d. (In addition, there is no evidence of any 
singularities in the complex z-plane). In this respect the analysis of the A ( z )  series is 
simpler than the S ( p )  series. Unfortunately, it appears that there is a confluent 
singularity at z = z ,  and this slows down the convergence considerably. For this reason 
we again confine ourselves to outlining our procedure but omitting all details. 

We begin by estimating the exponent e from the sequence 

where A, = Ns/N,-I is the ratio of successive coefficients and A ' is an estimate of the limit 
A. As the ratios A, are so smooth we have used as the sth estimate for A',  the quantity 
SA, - (s - l )As-l  which is the intercept obtained by extrapolating linearly against l / s  
adjacent pairs of ratios. For s sufficiently large, the 0, form a slowly increasing 
sequence (because of the confluent singularity) which is not easily extrapolated. Plotting 
against l / s  produces curves with quite a lot of curvature which we have tried to allow 
for using N-shifts and other devices (Gaunt and Guttmann 1974). Our best estimates of 
6 obtained in this way are presented in table 3 for d = 2 to 6. 

Adopting the central values of 6 we now estimate the corresponding growth 
parameter A. Both the linear intercepts, SA, - (s - l ) A s - l ,  just defined and the quantities 
sA,/(s-e), provide sequences of estimates for A which for sufficiently large s are 
monotonically increasing and decreasing, respectively. From these we obtain the 
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estimates given in table 3; the uncertainty in 8 would yield an additional uncertainty in A 
of the same order of magnitude as that quoted. The central value of 8 and the best 
estimate of A have been given previously ford = 2 and 3 (Sykes and Glen 1976, Sykes er 
a1 1976d). 

The above estimates of 8 and A are broadly confirmed by a Pad6 approximant 
analysis, but with larger uncertainties. The only point worth mentioning here is that the 
analysis must not be performed on A ( z )  but on the expansion of the derivative function 
dA/dz or d2A/dz2, chosen so that the asymptotic form (4.3) is converted into an 
algebraic divergence. 

The values of 8 for d = 2 to 6 are plotted in figure 1 and seem to vary smoothly with 
d .  This figure and table 3 suggest strongly that the exponent 8 also reaches its 
mean-field value 8 = 2; in six dimensions. In other words, it seems reasonable to 
conjecture that here too d ,  = 6. 

5. Conclusions 

The data available is difficult to extrapolate with precision. Our final estimates for 
and y in table 3 are in very reasonable agreement with the Monte Carlo estimates, p ,  
and y(MC)(d) ,  of Kirkpatrick (1976). Within the accuracy attainable they support the 
hypothesis of Toulouse (1974) that d ,  = 6 for the percolation problem. For the closely 
related cluster growth problem we have been led to make the hypothesis that d ,  = 6 in 
this case also. 

(h& 
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